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Schemes to Compute Unsteady Flashing Flows
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Some ways to compute � ashing � ows in variable cross section ducts are provided, focusing on the homogeneous
relaxation model. The basic numerical method relies on a splitting technique that is consistent with the overall
entropy inequality. The cross section is assumed to be continuous, and the � nite volume approach is applied to
approximate homogeneous equations. Several suitable schemes to account for complex equation of state are dis-
cussed, namely, the Rusanovscheme, an approximateform of the Roe scheme, and the “volumes � nis Roe” (VFRoe)
scheme with the help of nonconservative variables. To evaluate respective accuracy, the homogeneousEuler equa-
tions are computed � rst, and the L1 error norm of transient solutions of shock tube experiments are plotted. It
is shown that the Rusanov scheme is indeed less accurate, which balances its interesting properties, inasmuch as
it preserves the positivity of the mean density and the maximum principle for the vapor quality. Computations of
real cases are presented, which account for the mass transfer term and the time–space dependent cross sections.

I. Introduction

S OME applications in industry require predicting � ashing � ows
in variable cross section ducts. In some cases, it even becomes

compulsory to account for cross sections that also vary in time, for
instance, when predicting � ows in safety valves, which was one
of the basic motivations of the following developments. From the
modeling point of view, it is virtually acknowledged that the homo-
geneous relaxation model is accurate enough to represent the true
behaviorof that kind of � ow. In past years, Bolle et al.,1 Bilicki and
Kardas,2 Bilicki et al.,3 and Downar-Zapolski et al.4 investigated
such closures.For stationaryone-dimensional� ows, this model en-
ables thepredictionof thecriticalmass � ow rateand thepressuredis-
tribution with a good accuracy.1¡4 It requires some timescale to ac-
count for mass transfer, which governsphase change in strong rare-
faction waves. Friction effects will be disregarded herein, though
they may be easily accountedfor without altering the global behav-
ior of the algorithm. This is because the mean diameter of pipes in
our applications is rather large. The present contribution actually
aims at providing some ways to compute these complex industrial
problems involving unsteady � ashing � ows and, more speci� cally,
at providing deep insight on the strength and weaknesses of three
different upwinding techniques used in � nite volume conservative
schemes.Emphasis is given to the latter schemesbecausethey allow
computation of any equation of state (EOS) on any kind of mesh.
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We � rst describe the basics of the homogeneous relaxation
model (HRM), which governs the motion of the two-phase mix-
ture, assuming that relative velocities are small compared with the
speed of acoustic waves in the medium and have little in� uence
on the whole behavior of the � ashing � ows. Then, the overall nu-
merical technique of Ref. 5 is brie� y recalled, which relies on the
� nite volumemethod.6 Specialemphasis is given to threeupwinding
schemes to accountfor convective� uxes:an approximateGodunov7

scheme (see Refs. 8–14 based on the initial proposition of Refs. 15
and 16) and extended versions of Rusanov17 and Roe18 schemes
(also see Ref. 19) to the frame of nonconservative systems20¡23

(see Refs. 24 and 25 for the theoretical framework). Some prop-
erties of the schemes are recalled, and special emphasis is given
on the true level accuracy (and the rate of convergence) obtained
with the three schemes, focusing on either steady � ows in nozzles
or on shock tube experiments involving gas, vapor, or liquid and
complex EOS. More precisely, the L1 error norm is plotted in vari-
ous cases, which provides quantitativecomparison that is seldomly
available in the literature. This is one of the main contributions of
the present work, which examines both steady and highly unsteady
� ow patterns. Eventually, we present an application of some two-
phase � ashing � ow in a nozzle; this case is examined using the
three different schemes. Although important in practice, consider-
ations about parallelizingof the code are not discussed herein, and
the reader is referred to Refs. 26 and 27 for this subject matter.
Appendices A–D provide more information on the way boundary
conditions are handled28 and on the ef� cient “volumes � nis Roe”
(VFRoe)-nonconservative variable (NCV) approximate Godunov
scheme.8¡12

II. Basic Set of Equations
The basic set of equations of the HRM consists of the follow-

ing four equations, which govern the conservation laws for mass
of the two-phase mixture, vapor phase, and total energy of both
phases and an additional nonconservative equation for the mean
momentum1¡4;29¡31:

[½S.x; t/®];t C [½S.x; t/U®];x D S.x; t/0

[½S.x; t/];t C [½S.x; t/U ];x D 0

[½S.x; t/U ];t C [½S.x; t/U 2];x C S.x; t/P;x D 0

[S.x; t/E];t C [S.x; t/.E C P/U ];x C P[S.x; t/];t D 0 (1)
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when restricted to adiabatic � ows. S.x; t/ is the mean continuous
cross section (otherwise, previous equations are meaningless) and
is expected to be provided by users. Here, ½; U; P; ®, and E are the
meandensity,themeanvelocity,themeanpressure,thevaporquality
(which is expected to lie in [0,1]), and the mean total energy of the
two-phase mixture in the mean section, respectively. Subscripts t
and x denote the time and space variables. The total energy of the
two-phase mixture is related to the internal energy as follows:

E D ½e.¿; ®; P/ C 1
2 ½u2 (2)

where ¿ is the speci� c volume (¿ D 1=½/. This must be supple-
mented by closure laws for the mass transfer term 0 and for the
total internal energy of the two-phase mixture e, which is given by

e.¿; ®; P/ D ® eSV.P/ C .1 ¡ ®/ eML

µ
P;

¿ ¡ ®¿SV.P/

1 ¡ ®

¶
(3)

Metastable liquid (ML) and saturated vapor (SV) are indicated by
subscripts.Thermodynamic laws are given by Pollack.32

An important issue when computing � ashing � ows concerns the
forms for the mass transfer term. A simpli� ed form for this term
was proposed in Refs. 1– 4:

0 D ¡½[.® ¡ N®/=µ ] (4)

The mass transfer term requires computing the equilibriumquality:

N® D
h ¡ hSL.P/

hSV.P/ ¡ hSL.P/
(5)

where hSL.P/ andhSV.P/, respectively,denote the speci� c enthalpy
of the saturated liquid (SL) and the SV. Correlations used in com-
putations for the timescale µ were given by Downar Zapolski et al.4

and are recalled in Appendix C.
Before focusing on the numerical implementation of the model,

we need to introduce some additional variables. Throughout the
paper

O° D 1

.@e=@ P/¿;®

µ
¿ C ¿

P

³
@e

@¿

´

P;®

¶
(6)

and the square of the celerity of density waves is c2 D O° P¿ . The
speci� c entropy, s D s .P; ¿; ®/, is a function in agreement with

O° P

³
@s

@ P

´

¿;®

¡ ¿

³
@s

@¿

´

P;®

D 0 (7)

Hence, the whole model is closed.

III. Numerical Method
The numericalmethod is basedon a fractionalstep technique,21;33

which allows computing time variations of the mean cross section
and the remainingof convectiveand source terms. The overall tech-
nique is detailed in Ref. 5. It is shown there that the splitting tech-
nique is in agreement with the whole entropy inequality.Moreover,
the computation of the partial differential equations in frozen duct
(with respect to time) still may be split into two steps: The � rst one
involves the computation of the mass transfer term, and the sec-
ond one deals with the homogeneous nonconservative convective
effects.24;25 Because of the ratio of the timescale associated with
the fast acoustic waves over the timescale µ , which is smaller than
one in practice, the fractional step approach is not penalized as may
occur when computing other systems. In Ref. 5, it is shown that the
speci� c form of the mass transfer term enables ensuring the max-
imum principle for the vapor quality for regular enough solutions.
Details on numerical implementationof boundaryconditionscan be
found in Appendix B (also see Refs. 28 and 29 for further details).
Thus, we only focushere on the comparisonbetween three different
ways to deal with convective terms. Alternative ways to deal with
source terms, including a comparison with techniques suggested in
Ref. 34 can be found in Ref. 29.

The main two steps follow. Given some time step 1t n and initial
data Wn at time tn , one computes the followingordinarydifferential
equation for given mean values of Wn

i over cell i :

Wn
i D

Z

Äi

W.x; t n/
dx

hi

The time step is chosen in agreement with some Courant–
Friedrichs–Lewy (CFL) condition, and hi is the mesh size of cell i .

Step 1:

[½S.x; t/®];t D S.x; t/0; [½S.x; t/];t D 0

[½S.x; t/U ];t D 0; [S.x; t/E];t C P[S.x; t/];t D 0

[S.x; t/];t D j .x; t/ (8)

provides that on each cell i of the mesh

QWi D Ã1

¡©
Wn

k

ª
k 2 Z

¢

Obviously, this step is skipped when the cross section does not vary
with time [ j .x; t/ D 0]. We recall that the mean velocity and the
speci� c entropy do not vary through this step. The vapor quality
and the mean density agree with

®;t D 0=½; .log ½/;t D ¡ j=S

Once step 1 is solved, the convective system is solved over the time
interval [t n ; t n C1t n ], given initial data QWn

i on each cell and suitable
boundary conditions.

Step 2:

[½S.x; t/®];t C [½S.x; t/®U ];x D 0

[½S.x; t/];t C [½S.x; t/U ];x D 0

[½S.x; t/U ];t C [½S.x; t/U 2];x C S.x; t/P;x D 0

[S.x; t/E];t C [S.x; t/.E C P/U ];x D 0; [S.x; t/];t D 0 (9)

provides that on each cell i of the mesh

Wn C 1
i D Ã2

¡
f QWk gk 2 Z

¢

Details pertaining to Riemann invariants of the homogeneous part
of step 2, on shock relations, and on positivity constraints through
the one-dimensionalRiemann problem(see Ref. 35) associatedwith
the latter system are recalled in a previous paper.5 The source term
may be computed with an extra fractional step method.This may be
done in the simplest following way (which preserves the maximum
principle for the vapor quality at a discrete level), by computing
®.t C 1t/ as a function of ®.t/ as

®.t C 1t/ D exp[¡1t=µ.t/]®.t/ C f1 ¡ exp[¡1t=µ.t/]g N®.t/

(10)

or by using interface values of state variables. We now discuss up-
winding techniques.36

IV. Upwinding Techniques
We will now focus on the computation of the convective system

(step 2) using three different schemes; the three schemes enable
handling complex thermodynamic laws. The convective system (9)
may be written in condensed form as

.SW/;t C [SF.W/];x C SG.W/;x D 0 (11)

where W is the physical convervative variable. The � ux functions
are given by

F.W/t D [½U®; ½U; ½U 2; U .E C P/] (12a)

G.W/t D .0; 0; P; 0/ (12b)

The basic idea follows.The given sectionof the duct is discretized
and is assumed to be piecewise linear on each interface of control
volumes. Also, we introduce constant reconstructionof the conser-
vative variable

W t D .½®; ½; ½U; E/ (13)

over cell i (Fig. 1).
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Fig. 1 Sketch of the mesh.

Given some approximate values of the cross section at the cell
center S at time t n , the cross section at the interface is de� ned using
a linear interpolation:

Si C 1
2

D
hi Si C 1 C h i C 1Si

h i C hi C 1

(14)

The mean value of S.x/ over cell Äi is given by

S
_

i D
Z

Äi

S.x; t n/
dx

hi

(15a)

or

S
_

i D Si

µ
1 ¡

h i

4.hi C hi C 1/
¡

hi

4.hi C hi ¡ 1/

¶

C
hi

4

³
Si ¡ 1

hi C h i ¡ 1
C

Si C 1

h i C h i C 1

´
(15b)

All schemes will take the form

h i S
_

i

¡
Wn C 1

i ¡ QWi

¢
C 1t n S

_

i

±
G scheme

i C 1
2

¡ Gscheme
i ¡ 1

2

²

C 1t n
n

Si C 1
2
Fscheme

i C 1
2

¡ Si ¡ 1
2
Fscheme

i ¡ 1
2

o
D 0

We next de� ne variousforms of numerical � uxesFscheme andGscheme .
These formulas should provide consistantand stable approximation
of � uxes in the sense of Ref. 6. We use the standard notation

NÁ i C 1
2

D .Ái C Ái C 1/=2

A. Rusanov Scheme
An extension of the original Rusanov scheme18 yields

±
GRusanov

i C 1
2

²t

D
¡
0; 0;

NQP i C 1
2
; 0

¢
(16)

FRusanov
i C 1

2
. QWi ; QWi C 1/ D 1

2 [F. QWi / C F. QWi C 1/ ¡ S
_

i C 1
2
. QWi C 1 ¡ QWi /]

(17)

where

s_i C 1
2

D max.j Qu i j C c_i ; j Qu i C 1j C c_i C 1/ (18)

noting the numerical sound velocity

Oci
2 D QO° i

QPi Q¿i (19)

Recall that one of the main advantages of Rusanov scheme is that
it ensures the positivity of the density and the discrete maximum
principle for the vapor quality provided that some CFL condition
holds (see Appendix A).

B. Approximate Form of Roe Scheme
In a somewhat different framework, an extension of the original

Roe scheme17 to the frameof nonconservativesystemswas proposed
in Ref. 23. This enablesone to handletime-dependentand stationary

� ows.We useherea slightlymodi� edversionof thescheme(seealso
Ref. 20), which does not require consistancy with the integral form
of the conservation law, as the standard Roe scheme17 does, and,
thus, is useful when dealing with complex EOS. For convenience,
we de� ne

B.W/ D @F.W/

@W
C @G.W/

@W
(20)

and introduce

FRoe
i C 1

2
. QWi ; QWi C 1/ D 1

2
fF. QWi / C F. QWi C 1/

¡ jB[ OW. QYi ; QYi C 1/]j. QWi C 1 ¡ QWi /g (21)

noting

jB[ OW. QYi ; QYi C 1/]j D Ä[ OW. QYi ; QYi C 1/]j3[ OW. QYi ; QYi C 1/]j

£ fÄ[ OW. QYi ; QYi C 1/]g¡1 (22)

B.W/ D Ä.W/3.W/[Ä.W/]¡1 (23)

Matrix Ä.W/ represents the matrix of right eigenvectors of matrix
B.W/ introducedin Eq. (20), associatedmatrix3.W/ is thediagonal
matrix containing ordered eigenvalues

¸1 D U ¡ c; ¸2 D ¸3 D U; ¸4 D U C c

Eventually j3.W
_

/jkk D j¸k [3.W
_

/]j. The mean value of the conser-
vative state is de� ned as

OW. QYi ; QYi C 1/ D W[. QYi C QYi C 1/=2] (24)

where variable Y is de� ned as Y t D .®; ¿; u; P/. Note that GRoe
i C 1=2

is still given as

±
GRoe

i C 1
2

²t

D
¡
0; 0;

NQP i C 1
2
; 0

¢
(25)

This scheme has been extensively used to predict the behavior
of second-order turbulent closures in single-phase � ows, when no
Roe’s17 average is available.20 We emphasize that this scheme does
not ensure the positivity of density and the maximum principle for
vaporqualityof cell values.We recall that the originalRoe scheme,17

which requires satisfying the so-called Roe’s condition (or, in other
words, consistencywith the integral form of the conservation law),
only ensures positivity of density and mass fraction of vapor on a
one-dimensional staggered grid (namely, � ctitious cell [xi , xi C 1]),
whereas the exact Godunov scheme7 enables preservationof ½ ¸ 0,
1 ¸ ® ¸ 0 on cell values because of the projectionof the exact solu-
tion on the mesh.

C. Approximate Godunov Scheme: VFRoe Scheme with NCV
The originalVFRoe scheme is an approximateGodunovscheme7

that was � rst introduced in Refs. 15 and 16. The VFRoe-NCV
scheme is a sequel of the latter that generalizes the approach by
requiring some invertible change of variable, which provides the
so-called NCV Y (W ). The scheme was introduced in Ref. 8, with
applications to shallow water equations including comparison with
thebasicGodunovscheme(see Ref.9) andapplicationsto Eulergas-
dynamicswith arbitraryEOS in Ref. 10.Some possibleextensionsto
the frame of nonconservativehyperbolic systems were de� ned and
discussed in Refs. 11 and 12. Appendix D gives a description that
permits straightforwardcoding of the scheme. A recent note13 gives
some detailedcomparisonof capacitiesof the schemewith compari-
son with the energyrelaxationmethod,37 the Rusanovscheme,18 and
Toro primitive variable Riemann solver (PVRS) scheme.38 It also
provides the main properties of the scheme when restricting to pure
shock waves, steady or unsteady contact discontinuities, retaining
simple EOS such as perfect gas EOS, Tamman EOS, or more so-
phisticated ones including stiffened gas EOS, Van der Waals EOS,
Chemkin database,or tabulatedlaws (see Ref. 14). The � eld of prac-
tical applicationsof the VFRoe-NCV scheme up to now has mainly
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concernedgas � ows in turbines, in laminar and turbulent situations.
We recall that � uxes are given by

±
GVFRoeNCV

i C 1
2

²t

D
±

0; 0; P¤
i C 1

2
; 0

²
(26)

FVFRoeNCV
i C 1

2
. QWi ; QWi C 1/ D F

h
W

±
Y ¤

i C 1
2

²i
(27)

The starred value at interface Y ¤
iC1=2is obtained by solving a lin-

ear hyperbolicproblem(see AppendixD). We only provide speci� c
propertiesof the scheme when applying for Yt D .®; ¿; U; P/ NCV.
The � rst one concerns intermediate states of both pressure and ve-
locity variables in the linearized Riemann solver at the interface.
Denoting P1 and P2 (respectively, U1 and U2/ values of pressure
(respectively,velocity) on left side and right side of the contact dis-
continuity associatedwith eigenvalueU , one may easily check that
(see Appendix D)

P1 D P2; U1 D U2

Moreover, we may check that

®1 D ®i ; ®2 D ®i C 1

Thus, approximate values of the vapor quality at the interface pre-
dictedbyVFRoe-NCV schemeareexact in the sensethat theymimic
the numericalvaluespredictedby the exactGodunovscheme.7 (The
1-wave and the 4-wave are ghostwaves for vaporquality in the exact
solution of the Riemann problem.) Obviously the maximum princi-
ple for the vapor quality holds true.

V. Numerical Results
System (1) admits solutions that may be discontinuous. More-

over, timescales associated with relaxation mass transfer terms and
convectiveterms may be completelydifferent; this may rendercom-
putationsrather trickyespeciallywhen the timescaleassociatedwith
the relaxation term is small compared with the numerical time step
imposed by the CFL condition in relation to convectiveeffects. For-
tunately, physical effects involved here are in favor of the fractional
step method. Sudden variations of the cross section, for instance,
when computing safety valves,may in additionpenalizeaccuracyin
some con� gurations.Extensive validation of VFRoe-NCV scheme
has been previously performed when focusing on real gas � ows
and considering several EOS.8¡12 The ef� ciencies of the Rusanov
scheme18 and theapproximateRoe-type17 Riemannsolverhavebeen
investigated in a different framework (Refs. 13 and 20). When re-
stricting to Euler equations of gasdynamics with perfect gas EOS
and focusing on the computation of shock tube experiments with a
so-called � rst-order scheme, the rate of convergence(measuring er-
ror in L1 norm) is one-halffor the concentrationof pollutant (which
does not vary in the genuinely nonlinear � elds), and 1 for velocity
and pressure (which do not change through the contact discontinu-
ity). Figure 2 shows the evolution of the error for the concentration
using either � rst-order or second-order schemes (in the latter case,
the rate grows up to two-thirds). In all cases, the discrete error at
time T is computed using a regular mesh according to

kÁ ¡ Áhk.h; T / D
PN

i D 1 jÁh.xi ; T / ¡ Á.xi ; T /j
PN

i D 1
jÁ.xi ; T /j

The rateof convergenceforgivenvalueofCFL number is ¯ provided
that the error follows the law

kÁ ¡ Áhk.h; T / D C.Á; T /h¯

when h tends to 0. We restrict to the � rst-orderversionof the scheme
in the sections that follow.

A. Steady Flow in a Nozzle Filled with Perfect Gas
The � uid is assumed to be represented by perfect gas EOS. Sub-

sonic inlet and outlet boundary conditions are imposed so that a

Fig. 2 L1 error norm when computing a pure contact discontinuity.

a) Pressure

b) Mach number

c) Mass � ow rate

Fig. 3 Steady � ow in a nozzle; L1 error norm.

shock is present in the divergent part of the nozzle. Initial condi-
tions are P D 8 bar, T D 400 K, ® D 1, and U D 0 m/s. Boundary
conditions are Pinlet D 10 bar, ®inlet D 1, .½SU /inlet D 1504 kg/s, and
Poutlet D 8 bar.

Figure 3 provides the rate of convergenceof schemes toward the
exact steadysolution.We focushere on the mean pressure,the Mach
number, and the mass � ow rate. The rate of convergence is close
to 1¡ for all variables and for all schemes. Comparing Rusanov18

and VFRoe17 schemes, it appears that VFRoe provides the same
accuracy using a mesh size h instead of h/8. Other examples are
available in Ref. 29.
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Pressure

Mach number

Mass � ow rate

Fig. 4 Steady vapor � ow in a nozzle (200 nodes).

B. Steady Flow in a Nozzle Filled with Real Gas
We use similar initial and boundary conditions but apply then

for real gas EOS. Figure 4 shows that Rusanov scheme18 does not
provide a sharp (steady) shock pro� le in the divergent part when
using a coarse mesh with 200 nodes. The numerical prediction of
the steady mass � ow rate (½US) is much better predicted when
using the VFRoe scheme.17 Note that we have plotted cell values
of mass � ow rate but not interface mass � uxes. Hence, the Roe
scheme17 and theRusanovscheme18 predicta slightlydifferentvalue
than expected.These discrepanciestend toward zero when the mesh
is re� ned. The small glitch (which tends to 0 when the mesh is
re� ned) around the shock location when using VFRoe scheme17 is
due to numerical perturbations coming from the subsonic out� ow,
which interact with the numerical shock pro� le; this is combined
with the fact that the VFRoe-NCV scheme does not satisfy Roe’s
condition (or, in other words, consistency with the integral form
of the conservation law) for complex EOS (see Refs. 8 and 10).
We note, too, that the amplitude of this glitch is small compared
with the difference between constant values predicted by the Roe
and the Rusanov18 schemes and expected value imposed by user at
the inlet boundary. The relative error computed on the basis of the
mass � ow rate at interfaces predicted by the VFRoe scheme17 (see
Appendix D) is much lower than cell values of mass � ow rate on
given mesh size (which means that the � ow is steady at a discrete
point of view). Similar comments hold for cell values and interface
values for the total enthalpy H D .E C P/=½ . The most accurate
prediction is given here by the VFRoe scheme.

C. SOD Shock Tube with Liquid Water
Shock tube tests simulate the solution of the Riemann problem

with constant cross section S.x/ D S0. Thus, they are very useful
to study the capabilities of schemes to compute transient � ows.

Physically speaking, they correspond to the following situation: a
membrane, which initially separates two � uids with different ther-
modynamic states, is suddenly broken, so that waves start to prop-
agate.

Initial conditionsfor the � rst shock tube test case are detailednext
(subscripts L and R refer to the left-hand side and the right-hand
side of the membrane):

PL D 2000 bar; ½L D 1017.8 kg/m3; ®L D 1

uL D 0 m/s; PR D 100 bar; ½R D 838.3 kg/m3

®R D 1; u R D 0 m/s

Under these conditions, a shock wave travels to the right, followed
by a contact discontinuity, whereas a rarefaction wave propagates
to the left.

We have plot L1 error of predicted approximations provided by
the three schemes using a CFL number 0.95 (Fig. 5). The measured
rate of convergenceis approximatelythe same for both velocity and
pressure variables for both VFRoe-NCV and Roe-type17 schemes:
±U D ±P D 0:85. It is, thus, close to the expected value of 1 (the
second-order version of the scheme enables reaching rate 1¡ on
similar meshes). Part of the discrepancy is linked with that the EOS
is complex so that some error around the contact discontinuity is
introduced,14 which slows down the convergence on these rather
coarse meshes. Meanwhile the rate of convergence for the density
is approximately±½ D 0:65 and, thus, still a bit greater than expected
valueof 1

2 whenh tendsto 0.This is due to occurrenceof variationsof
the density in the 1-rarefactionwave and through the 3-shock wave,
which contributeto a balancebetween order 1

2 and 1 on intermediate
mesh sizes.This is con� rmedby themeasuredrateof convergenceof
densityfor theRusanovscheme,18 which is approximately±½ D 0:52
instead of expected 1

2 . Actually, to reach the same accuracy, one
needsalmost twice the numberof cells when usingRusanovscheme
instead of Roe scheme17 (or VFRoe scheme).

a) Pressure

b) Velocity

c) Density

Fig. 5 Shock tube � lled with water; L1 error norm.
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a) Pressure

b) Velocity

c) Density

Fig. 6 Shock tube � lled with vapor; L1 error norm.

D. SOD Shock Tube with Vapor
Initial conditions for the second shock tube tests case are

PL D 5 bar; ½L D 2.215 kg/m3; ®L D 1; uL D 0 m/s

PR D 1 bar; ½R D 0:435 kg/m3; ®R D 1; u R D 0 m/s

The CFL number is still 0.95. Similar comments hold here as in the
precedingcase (Fig. 6). Nonetheless,the performancesfor complex
EOS around the contact discontinuityare better due to the behavior
that in practice is very similar to the one associated with use of
perfect gas EOS. The measured rate of convergenceis still the same
for both velocity and pressure for both VFRoe-NCV and Roe-type
schemes17 and is around ±U D ±P D 0:9, instead of expectedvalue 1.
The rate of convergence for the density is once more ±½ D 0:65
(instead of 1

2
). There are indeed very few differences between rates

of convergenceof the three schemeshere, but the Rusanov scheme18

is still less accurate than the other two on a given mesh size.

E. Flashing Flow in a Nozzle
Initial conditions in the duct are

P D 15 bar; T D 470 K; ½ D 874.3 kg/m3

® D 0; u D 0 m/s

At the beginning of the computation, the pressure at the out� ow
suddenly decreases to

Pout D 10 bar

The regularmesh contains1000nodes (h D 10¡3 m). The CFL num-
ber has been set to 0.9. Figure 7 shows the pressure distribution,the
velocitydistribution,and thevoidfractiondistributionalongthepipe Fig. 7 Two-phase � ashing � ow.
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due to rarefaction wave traveling to the left. Similar computations
involving higher pressure ratios are reported in Ref. 27. The three
schemesbehavein a similarway, and there is indeednocontradiction
with earlier results because no shock wave or contact discontinuity
is present in the � ow� eld here, unlike in previouscases of unsteady
shock tube experiments. Nonetheless, we may notice some differ-
ences between results close to the right boundary condition, where
the vapor quality varies strongly.

VI. Conclusions
Severalways to computeunsteady� ashing� ows in variablecross

section ducts have been summarized, on the basis of an approxi-
mate Godunov scheme7 called VFRoe-NCV, an approximate form
of Roe’s scheme,17 and the early Rusanov scheme.18 All behave
rather well; nonetheless, the Rusanov scheme suffers from a great
amount of diffusion, which penalizes the scheme accuracy when
computing steady or unsteady � ows including shock waves. One
of the main contributionsconcerns investigation of the true rate of
convergence and of the level of accuracy for a given mesh size.
Focusing on pressure and velocity variables (respectively, the den-
sity and the vapor quality), standard MUSCL-type extension com-
bined with second-orderRunge–Kutta time integration (which was
not discussed herein) enables to reach � rst-order convergence rate
on rather coarse, or industrial, meshes (respectively, rate of con-
vergence of 2

3
), when computing unsteady shock tube experiments,

and second-orderwhen predictingregular � ows.9;10;13;27;29 The code
is currently used in our company for practical purposes involving
safety valves loaded with pressurizedvapor or liquid.27 The � eld of
applications of the HRM is obviously rather wide in the industry.
In all cases involving liquid water, or a mixture of vapor and liquid,
it was noted that requiring suf� cient small amount of error results
in the use of very � ne meshes, even in the one-dimensional frame-
work. Actually, in some cases, a mesh with approximately 10,000
nodes may be compulsory; otherwise, coarser meshes may provide
unrealistic predictions,which are not converged with respect to the
mesh size.27 Though not totally suf� cient from a theoretical point
of view, this is currently overcome using parallel versions of the
code, which turns out to be a rough though ef� cient way to handle
the situation.26 All computationsup to now have bene� ted from the
fact that time scalesassociatedwith mass transfer terms and convec-
tive effects are in favor of the use of the fractional step technique.
Some dif� culties have nonethelessarisen in some cases when � ash-
ing phenomenaoccur close to some boundarycondition.The strong
coupling between nonlinear effects of convection and sources, but
also on the nonlinear computation of local thermodynamic proper-
ties, renders the analysis of encountered slowdown of convergence
cumbersome.The smearing of the slow contact discontinuityby up-
winding schemes or, in other words, the poor accuracy around the
latter linearly degenerate � eld, which in addition supports the jump
of the vapor quality and of the mean density, may lead to nonlinear
interactions in EOS and yield blow up of the code when the mesh is
too coarse. Sometimes the only remedy is obtainedby local re� ning
of the mesh.

On the whole, the development and progress on algorithm im-
provements in at least three distinct directions are shown to still
be mandatory. A � rst point concerns the treatment of contact dis-
continuities in conservative schemes using upwinding techniques,
to minimize error around the latter, especially when complex EOS
are involved. Several attempts in that direction have been already
made (see Ref. 14 among others). A second problem is related to
the different timescales associatedwith velocity of the � uid and the
sound speed in almost incompressible � uids. This is indeed clearly
related to the standard problem of preconditioning of compress-
ible algorithms in � ows with low-speed patterns. A third important
point is connected with the coupling of source terms in convection
dominated � ows. This is particularly important in � ows that may
involve stiff source terms due to mass transfer. Progress has been
made in that � eld, too (see Ref. 34 for instance), but it still de-
serves further study. Until now, three-dimensionalcomputationsof
the HRM model with suf� ciently fair accuracy have been almost
beyond the reach of current computer facilities provided by local
work stations.
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Appendix A: Discrete Maximum Principle
for Vapor Quality

We examine here whether the maximum principle holds for the
approximate values of the vapor quality, when using the Rusanov
scheme. Focusing on mass conservation � rst, we get
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because of the de� nition of s.Wi;Wi C 1/ (maximum value of the
spectral radius of Jacobian matrix on cell i and i C 1), we imme-
diately conclude that the mean density remains positive, for given
positive values of the density at time t n , provided that
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Restricting to a constant cross section pro� le, the latter condition is
the straightforwardcounterpart of the usual CFL condition:

1 ¸ .1t=h/ maxfi;i C 1gf.jU j C Oc/i ; .jU j C Oc/i C 1g

If we turn now to the discrete values of the mass fraction of vapor,
we note that
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Applying condition (A3), we may conclude that the mean vapor
quality ® remains positive. Also substracting Eq. (A1) from
Eq. (A4), we get
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Hence, condition (A3) also implies that discrete values of ½(1-®/
remain positive, which completes the proof because discrete values
of density are positive.
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Fig. B1 Wave distribution at the outlet assuming subsonic � ow.

Appendix B: Numerical Implementation of Subsonic
In� ow and Out� ow Boundary Conditions

Actually, the same method is applied in both cases, and, thus,
we restrict here on the way to account for imposed pressure in a
subsonic out� ow. We assume subscript N refers to the last cell on
the right of the computationaldomain and that the � uid � ows to the
right at the outlet. P1 is set to be the imposed pressure level in the
outlet section, and the unknownsare, thus, ½1 , ®1, and U1 , which are
the density, mass fraction of vapor, and mean velocity in the outlet
section.These are simply determinedassuminga 1-rarefactionwave
(respectively,a one shock wave) connects state 1 with state N when
PN is greater than P1 (respectively, when PN < P1 ). We focus on
the � rst case, shown in Fig. B1.

Hence, preservation of the 1-Riemann invariants of the system
gives

®1 D ®N (B1)

s.½1; ®1; P1/ D s.½N ; ®N ; PN / (B2)

U1 D UN C
Z ½N

½1

c.½; ®N ; sN /

½
d½ (B3)

Relation (B2) provides unknown ½1 in a straightforwardway be-
cause both P1 and ®1 are given , due to Eq. (B1). Thus, one may
compute the integralon the right-handside of the last relation,which
provides the last unknown U1 . In the opposite case, that is, when
PN < P1 , we use a 1-shock parametrizationof curve:
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[e]N
1 ½1½N D [½]N

1 [.P1 C PN /=2] (B6)

Obviously, in case of supersonic out� ow, no condition should be
imposed, and the state at the outlet interface simply is state N .

Appendix C: Formulas for Mass Transfer Term
If P < 10 bar

µ D 6:51 £ 10¡4®¡0:257

µ
PS.Tin/ ¡ P

PS.Tin/

¶¡2:24

Otherwise,

µ D 3:84 £ 10¡7®¡0:54

µ
PS.Tin/ ¡ P

PC ¡ PS.Tin/

¶¡1:76

In the preceding closures, PS.Tin/ is the saturated pressure corre-
sponding to the inlet temperature and PC is the thermodynamic
critical pressure.

Appendix D: VFRoe-NCV Scheme with
Nonconservative Variable Yt = (®; ¿; U; P)

We detail how to get starred valueW(Y¤). Starting from a uniform
section, we rewrite locally at each cell interface the conservative
system

.½®/;t C .½®U /;x D 0; .½/;t C .½U /;x D 0

.½U /;t C .½U 2/;x C P;x D 0; .E /;t C [.E C P/U ];x D 0
(D1)

in a straightforwardcounterpart (for regular solutions) as follows:
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Hence, linearizing around an average state at interface .i C 1
2 /, we

get
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W.Yi C 1/]. We introduce the numerical sound velocity at each in-
terface (i C 1
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Y1 and Y2 are two intermediatestates arising when solvingthe linear
hyperbolic problem:
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See Fig. D1.

Fig. D1 Linearized Riemann problem.
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The coef� cients read
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Coef� cients are obtained by solving

Yi C 1 D Y i C
4X

k D 1

.®k/i C 1
2
r̂k

An entropycorrectionat sonicpointsin rarefactionwaves is required
as usual.Becauseof the previousdecomposition,one may easily see
that the numerical intermediate states are in agreement with exact
intermediate states because P1 D P2 and U1 D U2. Moreover, we
check that ®1 D ®i and ®2 D ®i C 1 .
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15Gallouët, T., and Masella, J. M., “A Rough GodunovScheme,” Comptes
Rendus Académie des Sciences Paris,Vol. 323, Série 1, 1996, pp. 77–84.

16Masella, J. M., Faille, I., and Gallouët, T., “On a Rough Godunov
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Développement, Electricite de France, Internal EDF Rept. HE-41/99/037/A,
Chatou, France, 1999 (in French).

28Dubois, F., “Boundary Conditions and the Osher Scheme for the Eu-
ler Equations of Gas Dynamics,” Centre de Mathématiques Appliquées de
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