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Schemes to Compute Unsteady Flashing Flows
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Some ways to compute flashing flows in variable cross section ducts are provided, focusing on the homogeneous
relaxation model. The basic numerical method relies on a splitting technique that is consistent with the overall
entropy inequality. The cross section is assumed to be continuous, and the finite volume approach is applied to
approximate homogeneous equations. Several suitable schemes to account for complex equation of state are dis-
cussed, namely, the Rusanov scheme, an approximate form of the Roe scheme, and the “volumes finis Roe” (VFRoe)
scheme with the help of nonconservative variables. To evaluate respective accuracy, the homogeneous Euler equa-
tions are computed first, and the L1 error norm of transient solutions of shock tube experiments are plotted. It
is shown that the Rusanov scheme is indeed less accurate, which balances its interesting properties, inasmuch as
it preserves the positivity of the mean density and the maximum principle for the vapor quality. Computations of
real cases are presented, which account for the mass transfer term and the time-space dependent cross sections.

I. Introduction

OME applicationsin industry require predicting flashing flows

in variable cross section ducts. In some cases, it even becomes
compulsory to account for cross sections that also vary in time, for
instance, when predicting flows in safety valves, which was one
of the basic motivations of the following developments. From the
modeling point of view, it is virtually acknowledged that the homo-
geneous relaxation model is accurate enough to represent the true
behavior of that kind of flow. In past years, Bolle et al.,' Bilicki and
Kardas,? Bilicki et al.,> and Downar-Zapolski et al.* investigated
such closures. For stationary one-dimensionalflows, this model en-
ablesthe predictionof the criticalmass flow rate and the pressuredis-
tribution with a good accuracy.!~* It requires some timescale to ac-
count for mass transfer, which governs phase change in strong rare-
faction waves. Friction effects will be disregarded herein, though
they may be easily accounted for without altering the global behav-
ior of the algorithm. This is because the mean diameter of pipes in
our applications is rather large. The present contribution actually
aims at providing some ways to compute these complex industrial
problems involving unsteady flashing flows and, more specifically,
at providing deep insight on the strength and weaknesses of three
different upwinding techniques used in finite volume conservative
schemes. Emphasis is given to the latter schemes because they allow
computation of any equation of state (EOS) on any kind of mesh.
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We first describe the basics of the homogeneous relaxation
model (HRM), which governs the motion of the two-phase mix-
ture, assuming that relative velocities are small compared with the
speed of acoustic waves in the medium and have little influence
on the whole behavior of the flashing flows. Then, the overall nu-
merical technique of Ref. 5 is briefly recalled, which relies on the
finite volume method.® Special emphasisis given to three upwinding
schemes to accountfor convective fluxes: an approximate Godunov’
scheme (see Refs. 8-14 based on the initial proposition of Refs. 15
and 16) and extended versions of Rusanov!” and Roe'® schemes
(also see Ref. 19) to the frame of nonconservative systems’*~23
(see Refs. 24 and 25 for the theoretical framework). Some prop-
erties of the schemes are recalled, and special emphasis is given
on the true level accuracy (and the rate of convergence) obtained
with the three schemes, focusing on either steady flows in nozzles
or on shock tube experiments involving gas, vapor, or liquid and
complex EOS. More precisely, the L1 error norm is plotted in vari-
ous cases, which provides quantitative comparison that is seldomly
available in the literature. This is one of the main contributions of
the present work, which examines both steady and highly unsteady
flow patterns. Eventually, we present an application of some two-
phase flashing flow in a nozzle; this case is examined using the
three different schemes. Although important in practice, consider-
ations about parallelizing of the code are not discussed herein, and
the reader is referred to Refs. 26 and 27 for this subject matter.
Appendices A-D provide more information on the way boundary
conditions are handled®® and on the efficient “volumes finis Roe”
(VFRoe)-nonconservative variable (NCV) approximate Godunov
scheme.$~12

II. Basic Set of Equations

The basic set of equations of the HRM consists of the follow-
ing four equations, which govern the conservation laws for mass
of the two-phase mixture, vapor phase, and total energy of both
phases and an additional nonconservative equation for the mean
momentum' ~42731;

[oS(x, Hal, +[pSx, HYUa] = S(x, )[’
[pS(x, D], +[pSx, U], =0
[pS(x, UL, +[pSx, YU+ S(x, )P, =0

[SCx,)E]; +[S(x,t)(E+ P)U],+ P[S(x,0], =0 (1)
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when restricted to adiabatic flows. S(x, t) is the mean continuous
cross section (otherwise, previous equations are meaningless) and
is expectedto be provided by users. Here, p, U, P, a, and E are the
mean density, the mean velocity, the mean pressure, the vaporquality
(which is expected to lie in [0,1]), and the mean total energy of the
two-phase mixture in the mean section, respectively. Subscripts #
and x denote the time and space variables. The total energy of the
two-phase mixture is related to the internal energy as follows:

E = pe(t,a, P) + pu’ 2)

where 7 is the specific volume (t =1/p). This must be supple-
mented by closure laws for the mass transfer term I' and for the
total internal energy of the two-phase mixture e, which is given by

T — am(P)} @)

e(rvavP):aeSV(P)+(1_a)eML[P1 1
—a

Metastable liquid (ML) and saturated vapor (SV) are indicated by
subscripts. Thermodynamic laws are given by Pollack *?

An important issue when computing flashing flows concerns the
forms for the mass transfer term. A simplified form for this term
was proposed in Refs. 1-4:

I'=—p[la—a)/6] 4)

The mass transfer term requires computing the equilibrium quality:
h — hg (P

. s.(P) -

hsy(P) — hs (P)
where hg. (P) and hsy (P), respectively,denote the specific enthalpy
of the saturated liquid (SL) and the SV. Correlations used in com-
putations for the timescale # were given by Downar Zapolski et al.*
and are recalled in Appendix C.
Before focusing on the numerical implementation of the model,
we need to introduce some additional variables. Throughout the

paper
s L | xfoe
V= Gejop)., [T TP (az)l,_j ©)

and the square of the celerity of density waves is ¢> =y Pt. The
specific entropy, s =s (P, 7, o), is a function in agreement with

s s
() () _
4 (aP)w T(az)m 0 ™

Hence, the whole model is closed.

III. Numerical Method
21,33

The numerical methodis based on a fractionalstep technique,
which allows computing time variations of the mean cross section
and the remaining of convective and source terms. The overall tech-
nique is detailed in Ref. 5. It is shown there that the splitting tech-
nique is in agreement with the whole entropy inequality. Moreover,
the computation of the partial differential equations in frozen duct
(with respect to time) still may be split into two steps: The first one
involves the computation of the mass transfer term, and the sec-
ond one deals with the homogeneous nonconservative convective
effects>*25 Because of the ratio of the timescale associated with
the fast acoustic waves over the timescale 6, which is smaller than
one in practice, the fractional step approach s not penalized as may
occur when computing other systems. In Ref. 5, it is shown that the
specific form of the mass transfer term enables ensuring the max-
imum principle for the vapor quality for regular enough solutions.
Details on numericalimplementationof boundary conditions can be
found in Appendix B (also see Refs. 28 and 29 for further details).
Thus, we only focus here on the comparison between three different
ways to deal with convective terms. Alternative ways to deal with
source terms, including a comparison with techniques suggested in
Ref. 34 can be found in Ref. 29.

The main two steps follow. Given some time step A#" and initial
data W" at time ", one computes the following ordinary differential
equation for given mean values of W over cell i:

dx
W= | W, )—
Qi hi

The time step is chosen in agreement with some Courant-
Friedrichs-Lewy (CFL) condition, and A; is the mesh size of cell i.
Step 1:

[pS(x, e, = S(x, NI, [pS(x, )], =0

loS(x, U], =0, [S&x.DE], + P[Sx,0)], =0

(S, D], =jx, 0 ®)
provides that on each cell i of the mesh

wi=vi({wi},_,)

Obviously, this step is skipped when the cross section does not vary
with time [j(x, ) =0]. We recall that the mean velocity and the
specific entropy do not vary through this step. The vapor quality
and the mean density agree with

o, =T/p, (logp),, =—j/S

Once step 1 is solved, the convective system is solved over the time
interval[¢", t" + At"], giveninitial data W' on each cell and suitable
boundary conditions.

Step 2:

loS(x, el +[pS(x, NaU]; =0
oS, D], +[pSx, U], =0
[pSCx, DU, +[pS(x,HU] , + S(x, )P, =0

[S(x, DEL, +[S(x, )(E + P)U] =0, (S, D], =0 )

provides that on each cell i of the mesh
W;’* '= Wz({wk}kez)

Details pertaining to Riemann invariants of the homogeneous part
of step 2, on shock relations, and on positivity constraints through
the one-dimensionalRiemann problem (see Ref. 35) associated with
the latter system are recalled in a previous paper.’ The source term
may be computed with an extra fractional step method. This may be
done in the simplest following way (which preserves the maximum
principle for the vapor quality at a discrete level), by computing
a(t + At) as a function of «(¢) as

a(t + At) = exp[—At/0(1)]a(r) + {1 — exp[—At/0(1)]}a ()
(10)

or by using interface values of state variables. We now discuss up-
winding techniques >

IV. Upwinding Techniques

We will now focus on the computation of the convective system
(step 2) using three different schemes; the three schemes enable
handling complex thermodynamiclaws. The convective system (9)
may be written in condensed form as

W), +[SF(W)], + SGW) , =0 (an

where W is the physical convervative variable. The flux functions
are given by

FW) = [pUa, pU, pU?, U(E + P)] (12a)
G(W)' = (0,0, P, 0) (12b)

The basicideafollows. The given section of the ductis discretized
and is assumed to be piecewise linear on each interface of control
volumes. Also, we introduce constant reconstructionof the conser-
vative variable

W' = (pa, p, pU, E) (13)

over cell i (Fig. 1).
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W, w wh

i+1
Fig.1 Sketch of the mesh.

Given some approximate values of the cross section at the cell
center S at time ", the cross section at the interface is defined using
a linear interpolation:

S+ hig S
S | =—mmm 14
i+4 hi+hi (1)
The mean value of S(x) over cell €; is given by
s dx
S; :/ S(x, t") — (15a)
Qi hi

. h h
Si=8|1- l - :
[ 4(hi+hi+1) 4(hz+hll)}

h; Si—1 Siy
+ — + 15b
4(hi+hi1 hi + hiy (150)

All schemes will take the form

hisvi(W?Jrl _ Wl) + AtnSvi (G?cre%ne _ G?che}ne>

n scheme __
+ At {SH%FH% SF%

scheme | __
poe] <o
We next define various forms of numerical fluxes F5"*™¢ and Gsheme,
These formulas should provide consistantand stable approximation
of fluxes in the sense of Ref. 6. We use the standard notation

b1 = (di +¢i1)/2

1
2

A. Rusanov Scheme
An extension of the original Rusanov scheme'® yields

(Gl.{usunov>[ — (()7 ()7 }:) 1 O) (16)

l+% i+3

FEEP™ W, Wi ) = 3IF W)+ FWii) = 5, 4 (Wi = Wl

an
where
Sit4 = max(|#;] + &, li; 1| + Ciy 1) (18)
noting the numerical sound velocity
&=y,P (19)

Recall that one of the main advantages of Rusanov scheme is that
it ensures the positivity of the density and the discrete maximum
principle for the vapor quality provided that some CFL condition
holds (see Appendix A).

B. Approximate Form of Roe Scheme

In a somewhat different framework, an extension of the original
Roe scheme!” to the frame of nonconservativesystems was proposed
in Ref. 23. This enables one to handletime-dependentand stationary

flows. We use here a slightly modified versionofthe scheme (see also
Ref. 20), which does not require consistancy with the integral form
of the conservation law, as the standard Roe scheme!” does, and,
thus, is useful when dealing with complex EOS. For convenience,
we define

and introduce
FEE Wi, W) = $FOW) + F(Wip1)

— [BIW(,, Yis DNWi 1 — W) @1
noting
IBIW(Y,, Y, )]l = QIW,. Y, DIAIW(,, Y, )]l

< AQUW Y, Y, )]} (22)
B(W) = QW) A(W)[Q(W)]™' (23)

Matrix Q(W) represents the matrix of right eigenvectors of matrix
B(W) introducedin Eq. (20), associatedmatrix A (W) is the diagonal
matrix containing ordered eigenvalues

)\,IZIJ_C7 )\,2:)\,3:U, )\,4:U+C
Eventually | A (W)Ikk =|M[A (W)]I. The mean value of the conser-
vative state is defined as

W, Yy 0) = WY +7Y,,,)/2] (24)
where variable Y is defined as Y’ = («, 7, u, P). Note that fom
is still given as

R ! 5
(Gif%) = (0,0, Py, 0) (25)

This scheme has been extensively used to predict the behavior
of second-order turbulent closures in single-phase flows, when no
Roe’s!” average is available* We emphasize that this scheme does
not ensure the positivity of density and the maximum principle for
vaporquality of cell values. We recall that the original Roe scheme,'”
which requires satisfying the so-called Roe’s condition (or, in other
words, consistency with the integral form of the conservation law),
only ensures positivity of density and mass fraction of vapor on a
one-dimensional staggered grid (namely, fictitious cell [x;, x; +]),
whereas the exact Godunov scheme’ enables preservationof p >0,
1 >« >0 on cell values because of the projection of the exact solu-
tion on the mesh.

C. Approximate Godunov Scheme: VFRoe Scheme with NCV

The original VFRoe scheme is an approximate Godunov scheme’
that was first introduced in Refs. 15 and 16. The VFRoe-NCV
scheme is a sequel of the latter that generalizes the approach by
requiring some invertible change of variable, which provides the
so-called NCV Y (W). The scheme was introduced in Ref. 8, with
applications to shallow water equationsincluding comparison with
the basic Godunov scheme (see Ref.9) and applicationsto Euler gas-
dynamics with arbitrary EOS in Ref. 10. Some possibleextensionsto
the frame of nonconservativehyperbolic systems were defined and
discussed in Refs. 11 and 12. Appendix D gives a description that
permits straightforward coding of the scheme. A recentnote'? gives
some detailed comparisonof capacitiesof the scheme with compari-
son with the energy relaxationmethod,?” the Rusanov scheme,'® and
Toro primitive variable Riemann solver (PVRS) scheme ®® It also
provides the main properties of the scheme when restricting to pure
shock waves, steady or unsteady contact discontinuities, retaining
simple EOS such as perfect gas EOS, Tamman EOS, or more so-
phisticated ones including stiffened gas EOS, Van der Waals EOS,
Chemkin database, or tabulatedlaws (see Ref. 14). The field of prac-
tical applicationsof the VFRoe-NCV scheme up to now has mainly
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concerned gas flows in turbines, in laminar and turbulentsituations.
We recall that fluxes are given by

13
(GYFl{loeNCV> _ (()7 0,P* |, 0) (26)
i+3 i+3
g =rw(r,)] e
3 2

The starred value at interface Y, ,is obtained by solving a lin-
ear hyperbolicproblem (see Appendix D). We only provide specific
properties of the scheme when applyingfor Y’ = («, 7, U, P) NCV.
The first one concerns intermediate states of both pressure and ve-
locity variables in the linearized Riemann solver at the interface.
Denoting P, and P, (respectively, U, and U,) values of pressure
(respectively, velocity) on left side and right side of the contact dis-
continuity associated with eigenvalue U, one may easily check that
(see Appendix D)

Py =P, U =0,
Moreover, we may check that
ap = o, Q) =01

Thus, approximate values of the vapor quality at the interface pre-
dictedby VFRoe-NCV scheme are exactin the sense that they mimic
the numerical values predicted by the exact Godunov scheme.” (The
1-wave and the 4-wave are ghost waves for vaporquality in the exact
solution of the Riemann problem.) Obviously the maximum princi-
ple for the vapor quality holds true.

V. Numerical Results

System (1) admits solutions that may be discontinuous. More-
over, timescales associated with relaxation mass transfer terms and
convectiveterms may be completely different; this may render com-
putationsrather tricky especially when the timescale associated with
the relaxation term is small compared with the numerical time step
imposed by the CFL conditionin relation to convectiveeffects. For-
tunately, physical effects involved here are in favor of the fractional
step method. Sudden variations of the cross section, for instance,
when computing safety valves, may in additionpenalizeaccuracyin
some configurations. Extensive validation of VFRoe-NCV scheme
has been previously performed when focusing on real gas flows
and considering several EOS.%~!2 The efficiencies of the Rusanov
scheme'® and the approximateRoe-type'’ Riemann solverhave been
investigated in a different framework (Refs. 13 and 20). When re-
stricting to Euler equations of gasdynamics with perfect gas EOS
and focusing on the computation of shock tube experiments with a
so-called first-order scheme, the rate of convergence (measuring er-
rorin L1 norm) is one-halffor the concentrationof pollutant (which
does not vary in the genuinely nonlinear fields), and 1 for velocity
and pressure (which do not change through the contact discontinu-
ity). Figure 2 shows the evolution of the error for the concentration
using either first-order or second-order schemes (in the latter case,
the rate grows up to two-thirds). In all cases, the discrete error at
time 7 is computed using a regular mesh according to

Y (i, T) — ¢ (x;, T
SN lp(x. T

¢ —ulCh, T) =

Therate of convergencefor given value of CFL numberis § provided
that the error follows the law

¢ — dull(h, T) = C(¢, T)h*

when 4 tends to 0. We restrict to the first-order version of the scheme
in the sections that follow.

A. Steady Flow in a Nozzle Filled with Perfect Gas
The fluid is assumed to be represented by perfect gas EOS. Sub-
sonic inlet and outlet boundary conditions are imposed so that a

-1.00
[3—E1Rho (order 1} slope=0.49918 /
3 -LIRhe (order 2) §lope=0.65325
-2.00 : o
’Q =
£ L
] /‘/’
I -3.00 -
2 P
3 P
N| o
-4.00 7
e’ :
-5.00 :
-7.00 -6.00 -5.00 -4.00 -3.00 -2.00
Log(h)

Fig.2 L1 error norm when computing a pure contact discontinuity.

Ln (error)
-3
4+
5+
—— VFRoe
6T —%—Rusanov|
-7 T —*—"Roe”
8+
-9 t t }
-9 -8 -7 -6 -5
Ln(h
a) Pressure (1)
Ln (error)
-4
5+
6T —#—VFRoe
7+ ——Rusanov
e Roe"
8+
9 | : :
-9 -8 -7 -6 -5
In(h)
b) Mach number
Ln (error)
-4
5+
6+
7+ ——VFRoe
-8 + —»— Rusanov|
ol e "Roe"
-10 +
-11 t t }
-9 -8 -7 -6 -5
Ln(h)

¢) Mass flow rate

Fig.3 Steady flow in a nozzle; L1 error norm.

shock is present in the divergent part of the nozzle. Initial condi-
tions are P =8 bar, T =400 K, « =1, and U =0 m/s. Boundary
conditions are Py = 10 bar, djpe = 1, (05U )inier = 1504 kg/s, and
Pyt = 8 bar.

Figure 3 provides the rate of convergence of schemes toward the
exactsteady solution. We focus here on the mean pressure, the Mach
number, and the mass flow rate. The rate of convergence is close
to 1~ for all variables and for all schemes. Comparing Rusanov'®
and VFRoe!” schemes, it appears that VFRoe provides the same
accuracy using a mesh size & instead of A/8. Other examples are
available in Ref. 29.
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—e Rusanov
1505 Jo————2 —o—Roe
1500 +
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Distance (m)

Mass flow rate

Fig. 4 Steady vapor flow in a nozzle (200 nodes).

B. Steady Flow in a Nozzle Filled with Real Gas

We use similar initial and boundary conditions but apply then
for real gas EOS. Figure 4 shows that Rusanov scheme'® does not
provide a sharp (steady) shock profile in the divergent part when
using a coarse mesh with 200 nodes. The numerical prediction of
the steady mass flow rate (pUS) is much better predicted when
using the VFRoe scheme.!” Note that we have plotted cell values
of mass flow rate but not interface mass fluxes. Hence, the Roe
scheme!” and the Rusanov scheme'® predicta slightly differentvalue
than expected. These discrepanciestend toward zero when the mesh
is refined. The small glitch (which tends to O when the mesh is
refined) around the shock location when using VFRoe scheme!” is
due to numerical perturbations coming from the subsonic outflow,
which interact with the numerical shock profile; this is combined
with the fact that the VFRoe-NCV scheme does not satisfy Roe’s
condition (or, in other words, consistency with the integral form
of the conservation law) for complex EOS (see Refs. 8 and 10).
We note, too, that the amplitude of this glitch is small compared
with the difference between constant values predicted by the Roe
and the Rusanov'® schemes and expected value imposed by user at
the inlet boundary. The relative error computed on the basis of the
mass flow rate at interfaces predicted by the VFRoe scheme!” (see
Appendix D) is much lower than cell values of mass flow rate on
given mesh size (which means that the flow is steady at a discrete
point of view). Similar comments hold for cell values and interface
values for the total enthalpy H = (E + P)/p. The most accurate
predictionis given here by the VFRoe scheme.

C. SOD Shock Tube with Liquid Water

Shock tube tests simulate the solution of the Riemann problem
with constant cross section S(x) = Sy. Thus, they are very useful
to study the capabilities of schemes to compute transient flows.

Physically speaking, they correspond to the following situation: a
membrane, which initially separates two fluids with different ther-
modynamic states, is suddenly broken, so that waves start to prop-
agate.

Initial conditionsfor the first shock tube test case are detailed next
(subscripts L and R refer to the left-hand side and the right-hand
side of the membrane):

P, = 2000 bar, o, = 1017.8 kg/m’, a, =1
u, =0m/s, P = 100 bar, or = 838.3 kg/m®
Op = 1, Up = 0 m/s

Under these conditions, a shock wave travels to the right, followed
by a contact discontinuity, whereas a rarefaction wave propagates
to the left.

We have plot L1 error of predicted approximations provided by
the three schemes using a CFL number 0.95 (Fig. 5). The measured
rate of convergenceis approximately the same for both velocity and
pressure variables for both VFRoe-NCV and Roe-type!” schemes:
8y =68p=0.85. 1t is, thus, close to the expected value of 1 (the
second-order version of the scheme enables reaching rate 1~ on
similar meshes). Part of the discrepancy is linked with that the EOS
is complex so that some error around the contact discontinuity is
introduced,* which slows down the convergence on these rather
coarse meshes. Meanwhile the rate of convergence for the density
is approximatelyd, = 0.65 and, thus, still a bit greater than expected
valueof% when & tendsto 0. This is due to occurrenceof variationsof
the density in the 1-rarefaction wave and through the 3-shock wave,
which contributeto a balance between order % and 1 on intermediate
mesh sizes. Thisis confirmed by the measuredrate of convergenceof
density for the Rusanov scheme,'® which is approximatelys, = 0.52
instead of expected % Actually, to reach the same accuracy, one
needs almost twice the number of cells when using Rusanov scheme
instead of Roe scheme!” (or VFRoe scheme).

Ln (error)
-2
34
4T —— VEROE
54 - RUSANOV|
6+ —~—ROE
7+
-8 t t t t t t t
A1 <10 9 8 7 6 -5 -4 3
Ln(h)
a) Pressure
Ln (error)
2
34+
4+
-a- VFROE
ST - RUSANOV]|
6+ —-ROE
74
-8 } } } } } } }
-11 -10 -9 -8 -7 -6 -5 -4 -3
Ln(h
b) Velocity ()
Ln (error)
-4
54
67 —— VFROE
1T -~ RUSANOV|
84 —~—ROE
94
-10 i : : ‘. : : 1

A1 <10 9 8 7 6 -5 -4 3

¢) Density Ln (h)

Fig.5 Shock tube filled with water; L1 error norm.
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Fig. 6 Shock tube filled with vapor; L1 error norm.
D. SOD Shock Tube with Vapor
Initial conditions for the second shock tube tests case are
P; =5 bar, o, =2.215 kg/m’®,

pr=0.435kg/m’,

o =1, u; =0m/s

Pr =1 bar, ap=1, ur =0m/s
The CFL number is still 0.95. Similar comments hold here as in the
precedingcase (Fig. 6). Nonetheless, the performances for complex
EOS around the contact discontinuity are better due to the behavior
that in practice is very similar to the one associated with use of
perfectgas EOS. The measuredrate of convergenceis still the same
for both velocity and pressure for both VFRoe-NCV and Roe-type
schemes!” and is around §; = 8p = 0.9, instead of expected value 1.
The rate of convergence for the density is once more §, =0.65
(instead of %). There are indeed very few differences between rates
of convergence of the three schemes here, but the Rusanov scheme!'®
is still less accurate than the other two on a given mesh size.

E. Flashing Flow in a Nozzle
Initial conditions in the duct are

P = 15 bar, T = 470K, o = 874.3 kg/m’

a =0, u=0m/s

At the beginning of the computation, the pressure at the outflow
suddenly decreases to

P, = 10 bar

The regular mesh contains 1000 nodes (A = 10~3 m). The CFL num-
ber has been set to 0.9. Figure 7 shows the pressure distribution, the
velocitydistribution,and the void fractiondistributionalong the pipe
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due to rarefaction wave traveling to the left. Similar computations
involving higher pressure ratios are reported in Ref. 27. The three
schemesbehavein a similar way, and thereis indeedno contradiction
with earlier results because no shock wave or contact discontinuity
is presentin the flowfield here, unlike in previous cases of unsteady
shock tube experiments. Nonetheless, we may notice some differ-
ences between results close to the right boundary condition, where
the vapor quality varies strongly.

VI. Conclusions

Several ways to compute unsteady flashing flows in variable cross
section ducts have been summarized, on the basis of an approxi-
mate Godunov scheme’ called VFRoe-NCV, an approximate form
of Roe’s scheme,'” and the early Rusanov scheme.'® All behave
rather well; nonetheless, the Rusanov scheme suffers from a great
amount of diffusion, which penalizes the scheme accuracy when
computing steady or unsteady flows including shock waves. One
of the main contributions concerns investigation of the true rate of
convergence and of the level of accuracy for a given mesh size.
Focusing on pressure and velocity variables (respectively, the den-
sity and the vapor quality), standard MUSCL-type extension com-
bined with second-orderRunge-Kutta time integration (which was
not discussed herein) enables to reach first-order convergence rate
on rather coarse, or industrial, meshes (respectively, rate of con-
vergence of %), when computing unsteady shock tube experiments,
and second-orderwhen predictingregular flows.>'%13272° The code
is currently used in our company for practical purposes involving
safety valves loaded with pressurized vapor or liquid.?’ The field of
applications of the HRM is obviously rather wide in the industry.
In all cases involving liquid water, or a mixture of vapor and liquid,
it was noted that requiring sufficient small amount of error results
in the use of very fine meshes, even in the one-dimensional frame-
work. Actually, in some cases, a mesh with approximately 10,000
nodes may be compulsory; otherwise, coarser meshes may provide
unrealistic predictions, which are not converged with respect to the
mesh size.?” Though not totally sufficient from a theoretical point
of view, this is currently overcome using parallel versions of the
code, which turns out to be a rough though efficient way to handle
the situation.2® All computations up to now have benefited from the
fact that time scales associated with mass transfer terms and convec-
tive effects are in favor of the use of the fractional step technique.
Some difficulties have nonethelessarisen in some cases when flash-
ing phenomenaoccur close to some boundary condition. The strong
coupling between nonlinear effects of convection and sources, but
also on the nonlinear computation of local thermodynamic proper-
ties, renders the analysis of encountered slowdown of convergence
cumbersome. The smearing of the slow contact discontinuity by up-
winding schemes or, in other words, the poor accuracy around the
latter linearly degenerate field, which in addition supports the jump
of the vapor quality and of the mean density, may lead to nonlinear
interactionsin EOS and yield blow up of the code when the mesh is
too coarse. Sometimes the only remedy is obtained by local refining
of the mesh.

On the whole, the development and progress on algorithm im-
provements in at least three distinct directions are shown to still
be mandatory. A first point concerns the treatment of contact dis-
continuities in conservative schemes using upwinding techniques,
to minimize error around the latter, especially when complex EOS
are involved. Several attempts in that direction have been already
made (see Ref. 14 among others). A second problem is related to
the differenttimescales associated with velocity of the fluid and the
sound speed in almost incompressible fluids. This is indeed clearly
related to the standard problem of preconditioning of compress-
ible algorithms in flows with low-speed patterns. A third important
point is connected with the coupling of source terms in convection
dominated flows. This is particularly important in flows that may
involve stiff source terms due to mass transfer. Progress has been
made in that field, too (see Ref. 34 for instance), but it still de-
serves further study. Until now, three-dimensional computations of
the HRM model with sufficiently fair accuracy have been almost
beyond the reach of current computer facilities provided by local
work stations.
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Appendix A: Discrete Maximum Principle
for Vapor Quality

We examine here whether the maximum principle holds for the
approximate values of the vapor quality, when using the Rusanov
scheme. Focusing on mass conservation first, we get

i

Sihip" ! = o (Sihi - (At/Z){S'H%[s(WI_"’ W)+ U]

+§i7%[5(Wi’1—1v Win) - Uin]})

+(At/2)[5(Winv Win+1) - Uin+1]si+%pin+1
a2 [s(Wr W) + U ]S,y (A1)
Thus, noting that

s(wrowe, ) —ur

i+1 i+

(>0, s(WL W) +U-, >0 (A2a)
s(wrowe, ) +U0r =0, s(W_, W) —U" >0 (A2b)

because of the definition of s(W; W;, ;) (maximum value of the
spectral radius of Jacobian matrix on cell i and i + 1), we imme-
diately conclude that the mean density remains positive, for given
positive values of the density at time ¢, provided that

1= (Al‘/Zhi){(Si+%/§i)[S(Wi", Win+1) + Uin]

+ (54 /8)[s(we wy) = or]) (A3)

Restricting to a constant cross section profile, the latter condition is
the straightforward counterpart of the usual CFL condition:

1 = (At/h)ymaxg; +  {({U| + &), (U +0)i 1}

If we turn now to the discrete values of the mass fraction of vapor,
we note that

Sihi(pa)' ! = (pa)! (Sihi - (At/z){si+ [s(wr,wr, ) +ur]

1
+S g [s(Wro wy) — Ui”]})
+(@ar/fs(Wr o wry,) - ur, 1]Si+%(/’0‘)?+ 1
+ At/ [s(Wr |, W) + U ]S, 1 () (A4)
Applying condition (A3), we may conclude that the mean vapor

quality « remains positive. Also substracting Eq. (Al) from
Eq. (A4), we get

Slp( =l = p(1 = (Sih — (ai/2]s, 4
x[s(wr ) + 0]+ sy [s(we o we) - o)
+ (At/Z)[s(Wi”, Wi, 1) - Uy I]Si+%['0(1 — ol
+(A/D[s(W W) + UL ]S, _ilp (=)l (AS)
Hence, condition (A3) also implies that discrete values of p(1-o)

remain positive, which completes the proof because discrete values
of density are positive.
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Fig. B1 Wave distribution at the outlet assuming subsonic flow.

Appendix B: Numerical Implementation of Subsonic
Inflow and Outflow Boundary Conditions

Actually, the same method is applied in both cases, and, thus,
we restrict here on the way to account for imposed pressure in a
subsonic outflow. We assume subscript N refers to the last cell on
the right of the computationaldomain and that the fluid flows to the
right at the outlet. P, is set to be the imposed pressure level in the
outlet section, and the unknowns are, thus, p;, &1, and U;, which are
the density, mass fraction of vapor, and mean velocity in the outlet
section. These are simply determinedassuminga 1-rarefactionwave
(respectively,a one shock wave) connects state 1 with state N when
Py is greater than P; (respectively, when Py < P;). We focus on
the first case, shown in Fig. B1.

Hence, preservation of the 1-Riemann invariants of the system
gives

o =ay (B1)
s(or, ar, P) =s(pn,ay, Py) (B2)
PN
U1:UN+/ Mdp (B3)
Pl P

Relation (B2) provides unknown p; in a straightforward way be-
cause both P, and «; are given , due to Eq. (B1). Thus, one may
compute the integral on the right-handside of the last relation, which
provides the last unknown U, . In the opposite case, that is, when
Py < Py, we use a 1-shock parametrization of curve:

o = ay (B4)
Uy = Uy = [Ip1' TP (p1pw) '] (BS)
[e1Y piow = [p1Y [(P1 + Py)/2] (B6)

Obviously, in case of supersonic outflow, no condition should be
imposed, and the state at the outlet interface simply is state N.

Appendix C: Formulas for Mass Transfer Term
If P <10 bar

—4-2.24
4 Ps(T) — P
9 =651 x 10 “57[5#
PS(Tin)
Otherwise,
71-1.76
Pg(Ty) — P
0 =3.84 x 107a0'54|:5+
Pe — Py(Tyy) |

In the preceding closures, Ps(Ti,) is the saturated pressure corre-
sponding to the inlet temperature and P is the thermodynamic
critical pressure.

Appendix D: VFRoe-NCV Scheme with
Nonconservative Variable Y’ = (o, 7, U, P)
We detailhow to get starred value W(Y*). Starting from a uniform

section, we rewrite locally at each cell interface the conservative
system

(pa),; + (pal) =0,
(pU), + (pU? .+ P, =0,

).+ @), =0
(E), +[(E+P)U],=0
(D1)

in a straightforward counterpart (for regular solutions) as follows:

(@), +U@) =0,
W), +UWU)+ ()P, =0,

0, +U@ - @OW) =0
(P),+UP)+yPU) =0
(D2)

Hence, linearizing around an average state at interface (i + %), we
get

Y, +CIWX,), WX . )IY, =0

where
U 0 0 0
0 U -7 0
CIWY), WX )] = -
0 0 T
0 0 yP U

i+%
We denote r; the basis of right eigenvectors of matrix C[W(Y;),
W(Y;,1)]. We introduce the numerical sound velocity at each in-
terface (i + %):

51'2+%:3;i+%ﬁi+%fi+% (D3)
where
$iis =3 +¢is1) (D4)
W_*+1 is then given by
itz
WL%:W(YI-) if ﬁi+%—éi+l >0
W;‘+%:W(Y1) if ﬁi+%—éi+%<0, ﬁi+%>0
W;‘+%:W(Y2) if ﬁi+%<0, ﬁi+l+éi+%>0
WL%:W(YI-H) if ﬁi+%+éi+%<0 (D5)

Y, and Y, are two intermediate states arising when solving the linear
hyperbolic problem:

Y=Y + (o), 4P (D6a)
Y=Y — (014)i+%;'4 (D6b)
with
F=007.06,0 74P ) (D7a)
7= (1,0,0,0) (D7b)
7= (0,1,0,0) (D7c)
F= (07,0 —8 1 —Pi P y) (D7d)
See Fig. D1.
u-¢
u+c
Y,
> 2

Fig.D1 Linearized Riemann problem.
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The coefficients read

U sipr —u; Tivd
(@) 1 =5|—=——-5=(P—P)| (Dsa)
2 Civt Ciyd
oy —u; Tl
(@), 3 =—5| ———+5—=(P.y1— P) | (D8b)
: 2 i+t Gyt

Coefficients are obtained by solving

4
Yoo =Y+ ) (@), 4h

k=1

An entropy correctionat sonic pointsinrarefactionwavesis required
asusual. Because of the previousdecomposition,one may easily see
that the numerical intermediate states are in agreement with exact
intermediate states because P, = P, and U, = U,. Moreover, we
checkthatoy =o; and oy = 1.
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